Looking For Anything Specific?

Header Ads

Sex Differences in Cardiometabolic Disorders


 Sex Differences in Cardiometabolic Disorders 
*
Sex differences in cardiometabolic risk factorsObesity. According to the World Health Organization (WHO), in 2018 11 % of men and 15% of women worldwide above 18 years of age were obese  (BMI  ≥30  kg/m2)  when  assessed  by  body  mass  index  (BMI).  Worldwide,  the  prevalence  of  obesity  has  tripled  since  1975.  The  National Health and Nutrition Examination Survey (NHANES) from 2013–2014 in the United States reported higher prevalence of obesity in women than in men (40.5 vs. 35.2%)10 (Table 1). While the obesity prevalence in women steadily increased in the period 1980–2014, no further increase was observed in men after 200610. In NHANES, obe-sity was more prevalent in subjects of Hispanic origin in both sexes, in current smoking men, and in women with less than high school edu-cation10. Data from the European Social Survey Round 7, performed in  20  European  countries,  found  on  average  15.9%  (range  11–20%)  of both women and men to be obese (Table 1)11. In both sexes, obe-sity  was  more  common  in  older  subjects  compared  to  middle-aged  and  younger  subjects11.  Furthermore,  regional  differences  in  obesity  prevalence were demonstrated; obesity prevalence was highest in the United Kingdom and East European countries, and lower in Central and Northern European countries11.Sex differences in body fatness and regional adipose tissue distri-bution  are  well  documented12.  Women  are  generally  characterized  by greater body fat mass and preferential accumulation of adipose tissue  in  the  gluteofemoral  region,  whereas  men  are  more  prone  to  abdominal  fat  deposition,  particularly  around  the  abdominal  internal  organs,  referred  to  as  visceral  obesity13–15.  In  the  Jackson  Heart Study, 55% of both sexes were obese (Table 1)15. Women had higher subcutaneous adipose mass than men (2,659 vs. 1,730 cm3), while  men  had  higher  visceral  adipose  mass  than  women  (873  vs.  793  cm3),  measured  by  computed  tomography15.  Visceral  adipose  mass was associated with higher odds ratios for hypertension, dia-betes  and  metabolic  syndrome  than  subcutaneous  adipose  mass  in  both  sexes15,  reflecting  the  higher  metabolic  activity  of  visceral  compared  to  subcutaneous  fat.  The  association  of  visceral  adipose  mass with prevalent hypertension and metabolic syndrome differed between women and men (odds ratios 1.62 [95% confidence inter-vals 1.4–1.9] in women vs. 1.55 [1.3–1.8] in men for hypertension and 3.34 [2.8–4.0] in women vs. 3.46 [2.8–4.3] in men for metabolic syndrome,  both  P<  0.001  for  sex  interaction)  after  multivariable  adjustment,  while  no  sex  difference  in  the  association  with  preva-lent diabetes was demonstrated 
***************************
Hypertension.  
According  to  the  WHO,  in  2015  one  in  four  men  and  one  in  five  women  worldwide  had  hypertension,  identified  as  a  systolic  blood  pressure  ≥140  mmHg  and/or  a  diastolic  blood  pressure ≥90 mmHg. In the United States, the hypertension preva-lence has remained the same among adults since 1999, on average 30.2% in men and 27.7% in women (P< 0.05 between sexes)16. In the  NHANES  survey  in  2015–2016,  men  had  a  higher  prevalence  of  hypertension  than  women  among  adults  aged  18–39  (9.2  vs.  5.6%)  and  40–59  years  (37.2  vs.  29.4%),  while  hypertension  was  more  common  in  women  among  adults  aged  60  years  and  over  (66.8  vs.  58.5%)16.  In  older  subjects,  isolated  systolic  hypertension  is  the  most  common  type  of  hypertension  in  both  sexes,  pointing  to the importance of arterial stiffening and aging for development of  hypertension17.  Obesity  is  generally  associated  with  a  threefold  higher  prevalence  of  hypertension  compared  to  that  in  normal  weight subjects3. 
***********************
Sex differences in preclinical cardiometabolic diseaseDiagnosis of preclinical cardiac disease. Preclinical cardiac disease 
refers to structural and/or functional changes in the heart in asymp-tomatic subjects that precede incident morbid cardiometabolic events (Box 1)31. Preclinical cardiac disease may be diagnosed by non-inva-sive  cardiac  imaging  methods  such  as  electrocardiography,  echocar-diography,  cardiac  magnetic  resonance  imaging  (CMR)  or  cardiac  computed tomography. Echocardiography is by far the most utilized imaging method based on its high availability and prognostically vali-dated measures of cardiac structure and function32–35. However, com-plementary information may be obtained by these different methods.Impact  of  cardiometabolic  risk  factors  on  prevalent  preclini-cal  cardiac  disease.  Cardiometabolic  risk  factors  such  as  obesity,  hypertension,  T2DM  and  metabolic  syndrome  are  all  associated  with  increased  prevalence  and  incidence  of  preclinical  cardiac  dis-ease32,33,35–39.  Obesity  promotes  preclinical  cardiac  disease  through  a number of hemodynamic and non-hemodynamic effects, includ-ing combined pressure and volume overload and biological actions in  visceral  adipose  tissue40.  A  number  of  these  changes  are  sexu-ally  dimorphic.  In  the  Fat-Associated  Cardiovascular  Dysfunction  (FATCOR) study in Norwegian middle-aged subjects with increased BMI and without known coronary artery disease, preclinical cardiac disease  was  diagnosed  by  echocardiography  in  77%  of  women  and  62%  of  men  (P<  0.01  between  sexes)  (Table  1)36.  The  type  of  pre-clinical cardiac disease differed by sex: a dilated left atrium was more prevalent  in  women  while  left  ventricular  hypertrophy  (LVH)  was  more prevalent in men (Box 1)36. Also, in older patients with mod-erate  hypertension  participating  in  the  Losartan  Intervention  For  Endpoint reduction in hypertension (LIFE) study undertaken in the United  States  and  Northern  Europe,  left  atrial  dilatation  was  more  common in women, found in 56% of women vs. 38% in men (P< 0.01 between sexes) (Table 1)41. In the LIFE study, women had a signifi-cantly higher prevalence of LVH both at baseline (80% in women vs. 70% in men) and after 4.8 years of systematic antihypertensive treat-ment  (50%  in  women  vs.  34%  in  men,  P<  0.001  between  sexes)42. Obesity was identified as the main factor associated with lack of LVH regression. In the American Strong Heart Study, LVH was also more common  in  women  than  in  men  (36  vs.  23%,  P<  0.001  between  sexes)43.  At  a  four-year  follow-up  examination,  regression  of  LVH  was  rare,  seen  in  only  3%  of  men  and  10%  of  women  (P<  0.0001 between  sexes).  Furthermore,  new-onset  LVH  was  diagnosed  in  a  comparable 14% of men and 15% of women43. Higher BMI and uri-nary albumin/creatinine ratio were identified as the most important confounders of lack of LVH regression in the Strong Heart Study in both  sexes43.  In  another  publication  from  the  same  cohort,  obesity  assessed by fat mass and waist/hip ratio was associated with higher left ventricular mass in women, but not in men44. In treated hyper-tensive patients in the prospective Italian Campania Salute Network project, new-onset LVH was seen in 21% of people during 16 years of follow-up, and particularly more common in women than men and in  obese  people  (Table  1)45.  Despite  the  higher  prevalence  of  LVH,  several studies in hypertension have reported that women have bet-ter left ventricular systolic function (Box 1)42,46. In the Strong Heart Study, reduced left ventricular systolic function was more common in obese men compared to obese women (6.2 vs. 2.9%, P< 0.001), independent  of  the  co-incidence  of  other  cardiometabolic  risk  fac-tors such as hypertension and diabetes47.We  recently  demonstrated  in  the  Campania  Salute  Network  project that women with treated, uncomplicated hypertension had a 35% lower risk of major cardiovascular events than their male coun-terparts (P< 0.01 for sex interaction)33. However, when hyperten-sion was complicated by LVH, this sex difference in cardiometabolic risk  disappeared33.  Taken  together,  these  reports  demonstrate  that  LVH is more common and less modifiable in women. Furthermore, when T2DM or LVH is present in women, their risk for cardiometa-bolic disease is similar to that observed in men
************************
References 1. Ng, M. et al. Global, regional, and national prevalence of overweight  and obesity in children and adults during 1980–2013: a systematic  analysis for the Global Burden of Disease Study 2013. Lancet384, 766–781 (2014). 2. Razavi, A. C., Potts, K. S., Kelly, T. N. & Bazzano, L. A. Sex, gut microbiome, and cardiovascular disease risk. Biol.  Sex.  Differ.10, 29 (2019). 3. Alpert, M. A., Lavie, C. J., Agrawal, H., Aggarwal, K. B. & Kumar, S. A. Obesity and heart failure: epidemiology, pathophysiology, clinical manifestations, and management. Transl.  Res.164, 345–356 (2014). 4. Peters, S. A., Huxley, R. R. & Woodward, M. Sex differences in body anthropometry and composition in individuals with and without diabetes in the UK Biobank. BMJ  Open6, e010007 (2016). 5. Mongraw-Chaffin, M. L., Peters, S. A. E., Huxley, R. R. & Woodward, M. The sex-specific association between BMI and coronary heart disease: a systematic review and meta-analysis of 95 cohorts with 1.2 million participants. Lancet  Diabetes  Endocrinol.3, 437–449 (2015). 6. Peters, S. A., Singhateh, Y., Mackay, D., Huxley, R. R. & Woodward, M. Total cholesterol as a risk factor for coronary heart disease and stroke in women compared with men: a systematic review and meta-analysis. Atherosclerosis248, 123–131 (2016). 7. Peters, S. A., Huxley, R. R. & Woodward, M. Diabetes as risk factor for incident coronary heart disease in women compared with men: a systematic FOCUS | Review ARticleNaTure MediciNeNatuRE MEdiciNE | www.nature.com/naturemedicine
Review ARticle | FOCUSNaTure MediciNereview and meta-analysis of 64 cohorts including 858,507 individuals and 28,203 coronary events. Diabetologia57, 1542–1551 (2014). 8. EUGenMed Cardiovascular Clinical Study Group et al. Gender in cardiovascular diseases: impact on clinical manifestations, management, and outcomes. Eur.  Heart  J.37, 24–34 (2016). 9. Sharashova, E. et al. Long-term blood pressure trajectories and incident atrial fibrillation in women and men: the Tromso Study. Eur.  Heart  J. (2019). 10. Flegal, K. M., Kruszon-Moran, D., Carroll, M. D., Fryar, C. D. & Ogden, C. L. Trends in obesity among adults in the United States, 2005 to 2014. JAMA315, 2284–2291 (2016). 11. Marques, A., Peralta, M., Naia, A., Loureiro, N. & de Matos, M. G. Prevalence of adult overweight and obesity in 20 European countries, 2014. Eur.  J.  Public  Health28, 295–300 (2018). 12. Mauvais-Jarvis, F. Sex differences in metabolic homeostasis, diabetes, and obesity. Biol.  Sex.  Differ.6, 14 (2015). 13. Fox, C. S. et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation116, 39–48 (2007). 14. Despres, J. P. et al. Race, visceral adipose tissue, plasma lipids, and lipoprotein lipase activity in men and women: the Health, Risk Factors, Exercise Training, and Genetics (HERITAGE) family study. Arterioscler. Thromb.  Vasc.  Biol.20, 1932–1938 (2000). 15. Liu, J. et al. Impact of abdominal visceral and subcutaneous adipose tissue on cardiometabolic risk factors: the Jackson Heart Study. J.  Clin.  Endocrinol.  Metab.95, 5419–5426 (2010). 16. Fryar, C.D., Ostchega, Y., Hales, C.M., Zhang, G. & Kruszon-Moran, D. Hypertension prevalence and control among adults: United States, 2015–2016. NCHS  Data  Brief, 1–8 (2017). 17. Scuteri, A. et al. Longitudinal perspective on the conundrum of central arterial stiffness, blood pressure, and aging. Hypertension64, 1219–1227 (2014). 18. Jackson, C. A., Dobson, A., Tooth, L. & Mishra, G. D. Body mass index and socioeconomic position are associated with 9-year trajectories of multimorbidity: a population-based study. Prev.  Med.81, 92–98 (2015). 19. Oertelt-Prigione, S. et al. Cardiovascular risk factor distribution and subjective risk estimation in urban women—the BEFRI study: a randomized cross-sectional study. BMC  Med.13, 52 (2015). 20. Pelletier, R. et al. Sex versus gender-related characteristics: which predicts outcome after acute coronary syndrome in the young? J.  Am.  Coll.  Cardiol.67, 127–135 (2016). 21. Pelletier, R., Ditto, B. & Pilote, L. A composite measure of gender and its association with risk factors in patients with premature acute coronary syndrome. Psychosom.  Med.77, 517–526 (2015). 22. Cho, N. H. et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes  Res.  Clin.  Pract.138, 271–281 (2018). 23. Al-Salameh, A., Chanson, P., Bucher, S., Ringa, V. & Becquemont, L. Cardiovascular disease in type 2 diabetes: a review of sex-related differences in predisposition and prevention. Mayo  Clin.  Proc.94, 287–308 (2019). 24. Lyon, A., Jackson, E. A., Kalyani, R. R., Vaidya, D. & Kim, C. Sex-specific differential in risk of diabetes-related macrovascular outcomes. Curr.  Diab.  Rep.15, 85 (2015). 25. Juutilainen, A. et al. Gender difference in the impact of type 2 diabetes on coronary heart disease risk. Diabetes  Care27, 2898–2904 (2004). 26. O’Neill, S. & O’Driscoll, L. Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obes.  Rev.16, 1–12 (2015). 27. Regitz-Zagrosek, V., Lehmkuhl, E. & Mahmoodzadeh, S. Gender aspects of the role of the metabolic syndrome as a risk factor for cardiovascular disease. Gend.  Med.4(Suppl. B), S162–S177 (2007). 28. Moore, J. X., Chaudhary, N. & Akinyemiju, T. Metabolic syndrome prevalence by race/ethnicity and sex in the United States, National Health and Nutrition Examination Survey, 1988–2012. Prev.  Chronic  Dis.14, E24 (2017). 29. Resnick, H. E. et al. Metabolic syndrome in American Indians. Diabetes Care25, 1246–1247 (2002). 30. Huxley, R., Barzi, F. & Woodward, M. Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ332, 73–78 (2006). 31. Devereux, R. B. & Alderman, M. H. Role of preclinical cardiovascular disease in the evolution from risk factor exposure to development of morbid events. Circulation88, 1444–1455 (1993). 32. Gerdts, E. et al. Left atrial size and risk of major cardiovascular events during antihypertensive treatment: losartan intervention for endpoint reduction in hypertension trial. Hypertension49, 311–316 (2007). 33. Gerdts, E. et al. Left ventricular hypertrophy offsets the sex difference in cardiovascular risk (the Campania Salute Network). Int.  J.  Cardiol.258, 257–261 (2018). 34. Lang, R. M. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J.  Am.  Soc.  Echocardiogr.28, 1–39.e14 (2015). 35. de Simone, G. et al. Does information on systolic and diastolic function improve prediction of a cardiovascular event by left ventricular hypertrophy in arterial hypertension? Hypertension56, 99–104 (2010). 36. Halland, H. et al. Sex differences in subclinical cardiac disease in overweight and obesity (the FATCOR study). Nutr.  Metab.  Cardiovasc.  Dis.28, 1054–1060 (2018). 37. Halland, H. et al. Effect of fitness on cardiac structure and function in overweight and obesity (the FATCOR study). Nutr.  Metab.  Cardiovasc.  Dis.29, 710–717 (2019). 38. de Simone, G. et al. Target organ damage and incident type 2 diabetes mellitus: the Strong Heart Study. Cardiovasc.  Diabetol.16, 64 (2017). 39. Bella, J. N. et al. Separate and joint effects of systemic hypertension and diabetes mellitus on left ventricular structure and function in American Indians (the Strong Heart Study). Am.  J.  Cardiol.87, 1260–1265 (2001). 40. de Simone, G., Mancusi, C., Izzo, R., Losi, M. A. & Aldo Ferrara, L. Obesity and hypertensive heart disease: focus on body composition and sex differences. Diabetol.  Metab.  Syndr.8, 79 (2016). 41. Gerdts, E. et al. Correlates of left atrial size in hypertensive patients with left ventricular hypertrophy: the Losartan Intervention For Endpoint Reduction in Hypertension (LIFE) Study. Hypertension39, 739–743 (2002). 42. Gerdts, E. et al. Gender differences in left ventricular structure and function during antihypertensive tre

Post a Comment

0 Comments