Looking For Anything Specific?

Header Ads

Diarrhea during COVID-19 infection: pathogenesis, epidemiology, prevention and management

Diarrhea during COVID-19 infection: pathogenesis, epidemiology, prevention and management

In  December  2019,  an  outbreak  of  pneumonia  of  unknown  etiology  in  Wuhan,  Hubei  province, China  led  to  the  identification  of  a  new  betacoronavirus,  called  severe  acute  respiratory  syndrome coronavirus  2  (SARS-CoV-2)1.  SARS-CoV-2  is  the  seventh  identified  coronavirus that  is  able  to infect  humans2.  In  addition  to  animal  origin  it  shares  up  to  80% of  the  gene  sequence  with  other members  of  coronavirus  family,  such  as  severe  acute  respiratory  syndrome  coronavirus  (SARS-CoV)  and  Middle  East  respiratory  syndrome  coronavirus  (MERS-CoV)2,3.  Our  understanding  of SARS human-to-human transmission is still evolving, but is currently believed to occur through air droplets,   although   fecal   oral   spread   and   airborne   transmission   may   be   other   sources   of transmission4,5.  In  a  short  time,  the  highly  contagious  virus  has caused  a  pandemic,  destabilizing health systems, economies, and governments around the world6. SARS-CoV-2  infection  can  be  asymptomatic  or  be  associated  with  the  coronavirus  disease  2019 (COVID-19),  which  has  a  spectrum  of  respiratory  clinical  manifestations  ranging  from  fever,  dry cough,  and  dyspnea  to  pneumonia,pulmonary   oedema,   acute   respiratory   distress  syndrome (ARDS),  and  multiple  organ  failures,  requiring  hospitalization  in  intensive  care  unit  (ICU)  and leading to death in severe cases7. Less common symptoms include headache, haemoptysis, nausea, vomiting,  and  diarrhea8.  Although  initially  found  in  a  small  percentage  of  cases,  an  increasing number of patients present with diarrhea9. Diarrhea is a frequent symptom in coronavirus infections; it  was  detected  in  up  to  30%  of  patients  with  MERS-CoV  and  10.6%  of  patients  with  SARS-CoV10,11.  The  purpose  of  this  review  is  to  examine  the  literature  on  the  epidemiology,  clinical symptoms, mechanism of action, management, and prevention of COVID 2019 associated diarrhea in  order  to  better  characterize  this  symptom  and  to  identify  any  preventive  measures  for  patients exposed to virus. 

Epidemiology of COVID -19  associated diarrhea  
Epidemiological data of COVID-19 patients with diarrhea are summarized in Table 1. The medical records of the National Health Commission of China allowed to evaluate the data of 1099 Chinese patients  with  an  established  diagnosis  of  COVID-19 up  to  31  January  202023.  Forty-two  subjects experienced  diarrhea  (3.8%)  and  the  primary  composite  outcome  (admission  to  ICU,  use  of mechanical  ventilation,  or  death)  occurred  in  4  patients  with  diarrhea  (6%)23.  In  a  retrospective study by Xu et al.24 diarrhea occurred in 3/62 patients (4.8%). A symptom duration-based analysis showed  that  diarrhea  was  experienced  only  in  patients  who  had  symptoms  for  more  than  10  days (3/33, 9%), while those who had a shorter duration had no diarrhea24. In a cross-sectional, Chinese
7 multicenter  study9  enrolling  204  patients  until  early  March  2020,  diarrhea  occurred  in  29  cases (29.3%). The time between symptom onset and admission to the hospital was significantly longer in patients with digestive symptoms than in patients without gastrointestinal manifestations (9 vs. 7.3 days, p=0.02)9. Most patients had non-dehydrating loose stools and had an average of 3 evacuations per  day9.  No  cases  of  severe  diarrhea  were  detected,  although  a  clinical  relationship  was  reported between  diarrhea  and  worsening  of  COVID-19  symptoms9.  Wu  et  al.  investigated  a  cluster  of subjects exposed to the infection at the same time, documenting the presence of diarrhea in 15% of positive patients25. In the experience of Huang et al.26, only one out of 41 (3%) patients had diarrhea as initial symptom, while another Chinese study conducted in the Zhejiang province
 reported a low rate of diarrhea onset in COVID-19 patients (2%). A study by Xiao et al.27 analyzed stool samples from 73 COVID-19 patients to assess the clinical significance of measuring SARS-CoV-2 RNA in the feces. Diarrhea was found in 26 patients and the fecal test remained positive until 12 days after the disease onset27. It is worth mentioning that in 17 patients (23.3%) the stool test was still positive despite  negative  respiratory  tests27.    In  addition,  in  a  78-year-old  patient  with  severe  respiratory distress treated with veno-venous extracorporeal membrane oxygenation (VV-ECMO), endoscopic procedures   were   performed   following   signs   of   bleeding   (coffee   ground   material   from   the nasogastric  tube  and  positive  fecal  occult  blood  test)27.  No  mucosal  damage  was  identified,  but multiple esophageal,  gastric, duodenal,  and rectal biopsies were performed27. Histological analysis revealed  a  high  percentage  of  ACE2  protein  in  the  glandular  cells  of  all  examined  segments,  with the exception of the esophagus (mainly characterized by squamous cells), supporting the theory of a possible effect of the virus on these organs27. An 81-year-old Japanese woman with COVID-19 had watery diarrhea and the virus was detected in the stool for up to 15 days after disease onset28. In a descriptive  case  series29  of  the  first  18  COVID-19  cases  in  Singapore,  3  patients  had  diarrhea (16.6%).  None  of  these  3  patients  had  complications  and  none  required  supplemental  oxygen29. Stool samples were tested by real-time reverse transcriptase – polymerase chain reaction (RT-PCR) and SARS-CoV-2 was found in 4/8 patients (50%) from day 1 to day 72
In  a small case series30,
8 data  from  5  patients  tested  positive  for  both  SARS-CoV-2  and  influenza  virus  were  analyzed, reporting  diarrhea  in  2  cases  (40%).  An  analysis  on  the  clinical  characteristics  of  30  medical members  (22  doctors  and  8  nurses)  with  COVID-19  showed  the  presence  of  diarrhea  in  9/30 subjects   (30%)31.   Recently,   the   first   study   specifically   designed   to   evaluate   patients   with gastrointestinal symptoms at disease onset was published32. One hundred eighty-three patients were included,  and  diarrhea  was  detected  in  68  cases  (37.1%).  COVID-19  epidemiological  data  in children are lacking, however in a recent analysis33 of 171 children with a median age of 6.7 years, diarrhea  was  reported  in  8.8%  (15)  of  cases.  Furthermore,  a  recent  systematic  review  and  meta-analysis  of  case  studies34  assessed  the  epidemiological  characteristics  of  1995  patients  with COVID-19,  showing  a  diarrhea  rate  of  4.8%.  Finally,  we  performed  a  pooled  analysis  of  all avaliable studies revealing an overall diarrhea rate of 10.4% in patients with COVID-19 

In  the  current  SARS-CoV-2  pandemic,  most  of  the  attention  is  still  exclusively  focused  on  the respiratory  symptoms  of  the  disease.  However,  it  is  important  to  emphasize  that  the  number  of COVID-19  patients  experiencing  diarrhea  is  significant  and  cannot  be  overlooked.We  found  high variability among published studies in the percentage of patients with diarrhea,  ranging from 2% to 50%  of  cases.  Our  pooled  analysis  of  the  available data  revealed  an  overall  diarrhea  rate  of  about 10% in COVID-19 patients. This value is lower than the percentage of diarrhea reported with other coronaviruses40,44, but  it  is  very  possible  that  the  available  data  may  underestimate  the  burden  of diarrhea  associated  with  COVID-1961.  For  example,  none  of  the  studies  we  reviewed  provided  an explicit  definition  for  diarrhea.  The  World  Health Organization  (WHO)  defines  diarrhea  as  3  or more  loose  /  liquid  stools  per  day  or  an  increase  in  the  number  of  evacuations  compared  to  the usual62.  Given  the  subjective  nature,  it  is  not  surprising  that  there  is  marked  heterogeneity  in    the estimates   of   patients   with   diarrhea   symptoms61.   The   collection   of   reliable   epidemiological information  is  fundamental,and  it  should  be  obtained  in  the  shortest  possible time  to  guarantee adequate  preventive  measures  and  to  allow  the  best pandemic  management.  Data  should  be recorded   with   explicit   diarrhea   definition   and   characterization   of   number   and   duration   of evacuations,  specifying  whether  the  symptom  occurred  at  the  onset  or  during  the  course  of  the disease.  The  use  of  the  so-called  "big  data",  could  be  a  valid  alternative  to  capture  the  growing
14 amoutn  of  data    in  a  short  period  as  proven  in  a  single  Chinese  experience63.  In  addition,  some patients have diarrhea in the absence of respiratory symptoms, and this may lead to underestimation of  COVID-19  cases,  as  further  investigations  may  not  be  performed  in  patients  with  mild symptoms.Another limitation is related to the diagnostic method. The analysis of respiratory tract samples does not allow identification of all infections, resulting in diagnostic delays or undiagnosedcases64. A recent study used a mathematical model to simulate the dynamics of infection in China65. It  was  estimated  that  around  86%  of  the  infections were  not  documented  and  thatpatients  with undocumented cases led to the contagion of most of the identified patients (79%)65. SARS-CoV-2 is similar to SARS-CoV and MERS-CoV, but it is transmitted faster than its predecessors and for this reason a rapid and optimal diagnostic approach is essential to contain the virus dissemination66. The evidence  of  SARS-CoV-2  in  the  stools  and  in  gastrointestinal  histological  samples  and  its prolongedpersistence  at  the  stool  compared  to  nasopharyngeal  swabs  strongly  suggests  that  oro-fecal  transmission  is  possible,  justifying  the  execution  of  fecal  PCR  in  suspect  patients27.  The homology  between  SARS-CoV-2  and  SARS-CoV  and  MERS-CoV  and  the  high  capacity  of  these viruses  to  resist  for  long  periods  (even  two  weeks)  at  low  temperatures  and  for  a  few  days  at temperatures between 20°C and 30 °C is a further confirmation of possible orofecal tranmission and requires an enhancement of preventive hygiene measures67. In  conclusion,  the  presence  of  diarrhea  should  generate  suspicion  of  a  possible  SARS-CoV-2 infection  and  should  be  investigated  in  order  to  reach  an  early  diagnosis  of  COVID-19.The incidence  of  diarrhea  is    currently  underestimated and  further  studies  are  needed  to  quantify  the exact  burden  of  diarrhea  to  compare  the  sensitivity  of  fecal  and  nasopharyngeal  tests,  to  evaluate whether  diarrhea  is  a  predictive  factor  for  prognosis,  and  to  clarify  the  effects  of  COVID-19  in patients with underlying gastrointestinal diseases


References 1.
   Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020;382:727–733. 2.   Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020;579:265–269. 3.   Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020;395:565–574.
16 4.   Gu J, Han B, Wang J. COVID-19: Gastrointestinal manifestations and potential fecal-oral transmission. [published online ahead of print, 2020 Mar 3]. Gastroenterology. 2020;S0016-5085(20)30281-X. doi:10.1053/j.gastro.2020.02.054 5.   Doremalen N van, Bushmaker T, Morris DH, et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. [published online ahead of print, 2020 Mar 17]. N Engl J Med. 2020;10.1056/NEJMc2004973. doi:10.1056/NEJMc20049736.   Anon. WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020. Available at: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 [Accessed March 20, 2020]. 7.   Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. [published online ahead of print, 2020 Feb 7]. JAMA. 2020;e201585. doi:10.1001/jama.2020.1585 8.   Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395:507–513. 9.   Pan L, Mu M, Ren HG, et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study. PracticeUpdate. Available at: https://www.practiceupdate.com/content/clinical-characteristics-of-covid-19-patients-with-digestive-symptoms-in-hubei-china/98000 [Accessed March 31, 2020]. 10.  Chan JF-W, Yuan S, Kok K-H, et al. A familial cluster of pneumonia associated with the 2019 novelcoronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020;395:514–523. 11.  Fan Y, Zhao K, Shi Z-L, et al. Bat Coronaviruses in China. Viruses. 2019;11(3):210. Published 2019 Mar 2. doi:10.3390/v11030210 12.  Song Z, Xu Y, Bao L, et al. From SARS to MERS, Thrusting Coronaviruses into the Spotlight. Viruses. 2019;11(1):59. Published 2019 Jan 14. doi:10.3390/v11010059 13.  Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019;17:181–192. 14.  Guo Y-R, Cao Q-D, Hong Z-S, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res 2020;7:11. 15.  Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579:270–273. 16.  Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. [published online ahead of print, 2020 Mar 4]. Cell. 2020;S0092-8674(20)30229-4. doi:10.1016/j.cell.2020.02.052 17.  Wan Y, Shang J, Graham R, et al. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020;94(7):e00127-20. Published 2020 Mar 17. doi:10.1128/JVI.00127-20. 18.  Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367:126

Post a Comment

0 Comments