Looking For Anything Specific?

Header Ads

Covid-19 and the Digestive System

Covid-19 and the Digestive System 

The novel coronavirus disease (Covid-19) is causing a major pandemic. As of 23 March 2020, it has infected over 340,000 people worldwide and caused over 14,000 deaths. The disease is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a positive-sense  single-stranded  RNA  virusand  is  taxonomically  a member  of  the Betacoronavirus genus. Patients typically present with fever and respiratory symptoms, nevertheless, some  patients also  have gastrointestinal manifestations  with diarrhoea, vomiting  and  abdominal  pain1.  Studies  have  identified  the  SARS-CoV-2  RNA  in anal  / rectal swabs 2, 3and stool specimens 4-6of Covid-19 patients, even after the clearance of the virus in the upper respiratory tract2, 3. Furthermore, the viral receptor angiotensin converting enzyme 2 (ACE2) was found to be expressed in gastrointestinal epithelial cells7,  8. Together  these  suggest  that  SARS-CoV-2  can  actively  infect  and  replicate  in  the gastrointestinal  tract.  This  has  important  implications  to  the  disease  management, transmission,    and    infection    control.    In    this    article, we    review    the    important gastrointestinal aspects of the disease
Gastrointestinal symptomsof Covid-19patients
While Covid-19patients typically  present with a respiratory illness, some  patients reported  gastrointestinal  symptoms  including diarrhoea,  vomiting  and  abdominal  pain during  course  of  the  disease. In  the  first  case  of Covid-19in  a  35-year-old  man  in  the United States4, the patient presented with a 2-day history of nausea and vomiting upon hospital admission, followed by diarrhoeaand abdominal discomfort on the second day of hospitalization. The SARS-CoV-2 RNA was detected in stool of the patient by reverse-transcriptase polymerase-chain-reaction  (RT-PCR)  on  illness  day  74.Similarly,  in  the familial cluster of Covid-19cases during the early epidemic9, diarrhoeawas described in two young  adults  (aged  36  and  37  years) out  of  the  six patients,  with  reported  bowel openings of up to eight times a day. Subsequentcohorts have consistently reported gastrointestinal symptomsamong Covid-19 patients. In a large study that collected data from 1,099 patients from 552 hospitals in China, it reported nausea or vomiting in 55 (5.0%)and diarrhoeain 42 (3.8%)patients Several othercohorts have reportedfrequencies of diarrhoearanging 2.0-10.1%, and nausea and/or vomiting ranging 1.0-10.1% (Table 1) 11-19. In the cohort of 140 Covid-19 patients  in  Wuhan,  gastrointestinal  symptoms were described in  up  to  39.6%  of  the patients 20,  including  nausea  in 24  (17.3%), diarrhoeain  18  (12.9%)  and  vomiting  in  7 (5.0%) patients. Similarly, the rate of diarrhoea was up to 35.6% in a cohort of 73 patients 7. These  rates  were  higher  than  some  other  cohorts,  and  highlightedthe  variability  of clinical  presentations. On  the  other  hand,  abdominal  pain  or discomfortwassparingly described 4, and was reported in 2.2-5.8% in patient cohorts16, 20(Table 1).Similar to adults, gastrointestinal symptoms were observed in a cohort of 171 paediatricpatients with Covid-1914.Diarrhoealand vomiting were observed in 15 (8.8%) and 11 (6.4%) of these children, respectively. In another study that investigated viral shredding in paediatricCovid-19 patients, diarrhoeawas observed in three out of the ten infected children3. Although different clinical features, such as a milder disease course 14and less respiratory symptoms3have  been proposed  in  Covid-19  children,  the gastrointestinal symptoms appear to be similar, although more clinical data are needed to arrive at such a conclusion.It is evident that patients can present with gastrointestinal symptoms early in the disease course. For  example,  the  first  Covid-19 patient in  the  US  had  nausea  and  vomiting  two days before going to hospital, and developeddiarrhoeaon the second day of admission 4, whereas the two young adults in the early familial Covid-19 cluster had diarrhoeaupon presentation to the hospital 9. Diarrhoeacan be one initial symptom and may even occur earlier than pyrexia or respiratory symptoms in some cases 

Liver injury in Covid-19 patients
Apart from gastrointestinal symptoms, patients with Covid-19 can have liver injury with raised enzymes found in blood tests. Current dataindicated that 14.8-53.1% of Covid-19 patients had   abnormal   levels   of   alanine   aminotransferase   (ALT)   and   aspartate aminotransferase (AST) during the course of disease, with mostly mild elevation in serum bilirubin 10-12, 15-18, 27.In  a commentary that described a cohort of 56 Covid-19 patients, gamma-glutamyl  transferase  (GGT)  was  elevated  in 54%  of  the  patients 28. Most  of  the liver  injuries  are  mild  and  transient,  although  severe  liver  damage  can  occur.  The proportion of liver injury was also higher in patients with severe Covid-19 disease 10, 12. In  the  cohort  that  described  99  patients  in  Wuhan,  43  patients  had  raised  ALT or  AST; one patient with critical Covid-19 had severe hepatitis with serum ALT increased up to 7590 U/L 11.While the mechanism of liver injury is not fully understood, the injury can be due to direct viral infection of hepatocytes,immune-related injury, or drug hepatotoxicity 29. There is also suggestion that the virus may bind to cholangiocytes through the ACE2 receptor to dysregulate  the  liver  function 28. Notably,  histological  examination  of  the  liver  biopsy from  a  deceased  Covid-19  patient  showed  microvesicular  steatosis  and  mild  lobular activity30. These histological changes could be caused by SARS-CoV-2 infection or drug-induced liver injury. Nevertheless, no viral inclusion was observed in the liver.It remains to be studied whether SARS-CoV-2 may target the liver in a similar manner to SARS-CoV31-33, and whether other mechanisms play an important role in the liver injury. 
Mechanismsof gastrointestinal tract involvement
Evidence  from  previous SARS studies  indicated  that coronavirus  has  a  tropism  to  the gastrointestinal tract. The SARS-CoVRNA could be readily detected in stool specimens of SARS  patients34, andelectron  microscopy on biopsy  and  autopsy  specimens showed active viral replications in both smalland large intestines 22. Similarly, enteric infection could occur with MERS-CoV, as human intestinal epithelial cellswere highly susceptible to  the  virus  and  could  sustain  robust  viral  replication 35.  This gastrointestinal tropism may  explain  the  frequent  occurrence  of  diarrhoea  in  coronavirus infection.  This  faecal  source can lead to fomite transmission, especially when infective aerosols are generated from the toilet plume 36.Although  at  a  lower  frequency  compared  to  SARS,  some  Covid-19  patients  do  develop diarrhoea during their disease course. This suggests the possible tropism of SARS-CoV-2 to the gastrointestinal tract.Genome sequences showed that SARS-CoV-2 shared 79.6% sequence identity to SARS-CoV, both encoding and expressing the spike (S) glycoproteins that could bind to the entry receptor ACE2 to enter human cells 37-39. The receptor binding domainon SARS-CoV-2 could bind to human ACE2with high affinity, correlating with the efficient spread of the virus among humans 40, 41. While ACE2 is highly expressed in type II  alveolar  cells  (AT2)  in  the  lungs,  the  receptor  is  also  abundantly  expressed  in  the gastrointestinal  tract,  especially  in  the  small  and  large  intestines 7,  8.  Staining  of  viralnucleocapsid   protein   was   visualized   in   cytoplasm   of   gastric,   duodenal   and rectal epithelium27. These  data have  provided  valuable  insights  into  the  receptor-mediated entry into the host cells, and provided basis for its possible transmission route through the faecalcontents.

Implications to patient care and infection control
The  tropism  of  SARS-CoV-2  to  the  gastrointestinal  tract,  itspositive detection  in  stool, and its  associated gastrointestinal symptoms,  have  important  implications  to  both patient  care  and  infection  control. Clinicians  should  be  alert  of  the  gastrointestinal symptomatology  of Covid-19,  especially  as  they  may  occur  before  the  onset  of  pyrexia and respiratory symptoms.More importantly, several studies have demonstrated the presence of viral RNA in stool or  anal  /  rectal  swabs of  Covid-19  patients2-6.  In  a  study  that  evaluated  73  Covid-19 patients, 39 (53.4%) were tested positive for SARS-CoV-2 RNA in stool, with a duration of  positive  stool  ranging  from  1  to  12  days.  Rather  of  concern,  17  (23.3%)  patients remained  positive  with  stool  viral  RNA  after  showing  negative  in  their  respiratory samples 7.  In  another  study  that  followed  10 paediatricpatients  and  evaluatedtheir nasopharyngeal  and  rectal  swabs,  eight  children  were  persistently  tested  positive  on rectal swabs even after nasopharyngeal clearance of the virus3. Moreover, two children had  positive  rectal  swabs,  despite  after  clearance  with  two  consecutive  negative  rectal swabs separated by at least 24 hours apart 31. In contrast to the cycle threshold (Ct)value of 36-38 on illness day 7 stool sample from the first US case4, the longitudinal Ct values in the paediatricpatients were mostly below 353. This suggested that viral shedding from the gastrointestinal tract may be abundant, and may last long after resolution of clinical symptoms. Indeed, a previous study of SARS-CoV indicated that viral RNA could still be detected  after  30  days  in  stool  of  SARS  patients 42.  Nevertheless,  the  viral  dynamic  of SARS-CoV-2 in the gastrointestinal tract is not known, and may not follow that of SARS-CoV as observed in the respiratory tract 25, 43.The immediate implication of these data iscertainly on the disease infectivity. A recent environmentalstudy  suggested  that  SARS-CoV-2  could  remain  viable  in  aerosols  for hours, and could stay stably on plastic and stainless steel for at least 72 hours 44.While more  studies  are  needed  to  demonstrate  its  replication-competence,  its  abundance  in stool and stability in environment would poise SARS-CoV-2 favourablyto spread among human hosts. This faecal source can lead to viral transmission especially when aerosols are generated, as with the major outbreak caused by toilet fume in Amoy Garden during the SARS epidemics in Hong Kong 36. The gastrointestinal involvement of Covid-19 would necessitate a  need  to  consider  several  clinical  policies,  such  as incorporationof rectal swab  testing before discharging patients45,  as  well  as our  preparedness  for personal protective  equipment in the endoscopy setting46,   47.  These  considerations  will  be important in our battle against Covid-19


.References[
1]Gu J, Han B, Wang J. COVID-19: Gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology. 2020.[2]Zhang W, Du RH, Li B, et al.Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect. 2020; 9: 386-9.[3]Xu  Y,  Li  X,  Zhu  B,  et  al.Characteristics  of  pediatric  SARS-CoV-2  infection  and potential evidence for persistent fecal viral shedding. Nature Medicine. 2020.[4]Holshue ML, DeBolt C, Lindquist S,et al.First Case of 2019 Novel Coronavirus in the United States. N Engl J Med. 2020; 382: 929-36.[5]Tang  A,  Tong  ZD,  Wang  HL,  et  al.Detection  of  Novel  Coronavirus  by  RT-PCR  in Stool Specimen from Asymptomatic Child, China. Emerg Infect Dis. 2020; 26.[6]Young  BE,  Ong  SWX,  Kalimuddin  S,  et  al.Epidemiologic  Features  and  Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA. 2020.[7]Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 2020.[8]Harmer D, Gilbert M, Borman R, Clark KL. Quantitative mRNA expression profiling of  ACE  2,  a  novel  homologue  of  angiotensin  converting  enzyme. FEBS  Lett.  2002; 532: 107-10.[9]Chan JF, Yuan S, Kok KH, et al.A familial cluster of pneumonia associated with the 2019  novel  coronavirus  indicating  person-to-person  transmission:  a  study  of  a  family cluster. Lancet. 2020; 395: 514-23.[10]Guan WJ, Ni ZY, Hu Y, et al.Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020.[11]Chen  N,  Zhou M,  Dong X,  et  al.Epidemiological  and  clinical  characteristics  of  99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395: 507-13.[12]Huang C, Wang Y, Li X,et al.Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395: 497-506.[13]Liu K, Fang YY, Deng Y, et al.Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J (Engl). 2020.[14]Lu X, Zhang L, Du H, et al.SARS-CoV-2 Infection in Children. N Engl J Med. 2020.[15]Shi H, Han X, Jiang N, et al.Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020.[16]Wang D, Hu B, Hu C, et al.Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020.[17]Xu XW, Wu XX, Jiang XG, et al.Clinical findings in a group of patients infected with the  2019  novel  coronavirus  (SARS-Cov-2)  outside  of  Wuhan,  China:  retrospective  case series. BMJ. 2020; 368: m606.[18]Yang X, Yu Y, Xu J, et al.Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020.[19]Zhou  F,  Yu  T,  Du  R,  et  al.Clinical  course  and  risk  factors  for  mortality  of  adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020.[20]Zhang JJ, Dong X, Cao YY, et al.Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020.[21]Lee N, Hui D, Wu A, et al.A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med. 2003; 348: 1986-94

Post a Comment

0 Comments